Generate and propagate Monte Carlo Simulations based on a template input file.
Source:R/fct_combine_mcs_cstock.R
fct_combine_mcs_cstock.Rd
TBD
Arguments
- .ad
Activity Data input table for the shiny app (AD_lu_transitions)
- .cs
Carbon Stock input table for the shiny app (c_stocks)
- .usr
User inputs' table for the shiny app (user_inputs). Contains the number of iterations of the MCS, carbon fraction if needed and if truncated PDFs should be used when necessary.
Value
A data frame with Monte Carlo simulations of CO2 emissions for each land use transition, REDD+ activity or emission reductions level.
Examples
library(mocaredd)
library(readxl)
library(dplyr)
path <- system.file("extdata/example2-with-sims.xlsx", package = "mocaredd")
cs <- read_xlsx(path = path, sheet = "c_stocks", na = "NA")
ad <- read_xlsx(path = path, sheet = "AD_lu_transitions", na = "NA")
usr <- read_xlsx(path = path, sheet = "user_inputs", na = "NA")
res <- fct_combine_mcs_cstock(.ad = ad, .cs = cs, .usr = usr)
#> Error in pmap(combi, function(period, lu) { c_sub <- filter(.cs, .data$c_period == period, .data$c_lu_id == lu) c_check <- fct_check_pool(.c_sub = c_sub, .c_unit = .usr$c_unit, .c_fraction = .usr$c_fraction)}): could not find function "pmap"
res |> filter(sim_no == 1)
#> Error: object 'res' not found